Melissa Mitchum: Those Tricky Nematodes

You can't teach an old dog new tricks?

Well, how about nematodes? They can do "tricks," too. 

Professor and plant pathology researcher Melissa Mitchum of the Department of Pathology, University of Georgia, willpresent the next UC Davis Department of Entomology and Nematology seminar.on "The Tricks Phytonematodes Use to Modulate Plant Development."

 Her virtual seminar begins at 4:10 p.m., Pacific Time, on Wednesday, March 9, announced seminar coordinator and nematologist Shahid Siddique, assstant professor, UC Davis Department of Entomology and Nematology.

"Phytonematodes secrete a suite of effectors to modulate developmental programs of their hosts to cause disease," Mitchum says in her abstract. 'In this talk, I will highlight what we are learning about these effectors and the tricks they use to accomplish their goals."

Along with colleague Lisa Beamer of the University of Missouri, Mitchum is co-directing a four-year $1.2 million grant from the joint National Science Foundation and the U.S. Department of Agriculture National Institute of Food and Agriculture Plant-Biotic Interactions Program "to help combat a devastating soybean pathogen," according to a January 2022 news article in the Johnson City Press, Tenn. "The soybean cyst nematode, a microscopic roundworm, is responsible for annual crop losses of $1 billion in the U.S. alone," the news story relates.

Mitchum's research focuses "on molecular plant-nematode interactions with an emphasis on the sedentary endoparasitic cyst and root-knot nematodes," Mitchum says on her website. "Pathosystems include cyst (Heterodera glycines) nematode on soybean, cyst (Vittitadera zeaphila) nematode on corn, and root-knot (Meloidogyne spp.) nematodes on soybean, cotton, and peanut. We utilize the model plant Arabidopsis to accelerate our studies to dissect the molecular basis of parasitism by cyst (Heterodera schachtii) and root-knot nematodes. Our work addresses plant responses during compatible and incompatible plant-nematode interactions, the identification and functional analysis of nematode stylet-secreted effector proteins, and developmental reprogramming of host root cells via peptide mimicry and phytohormone manipulation. I work closely with plant breeders to develop high yielding, nematode resistant varieties. Current efforts are also focused on translating basic discoveries to develop novel approaches for nematode resistance in crop plant."

Mitchum received her bachelor's degree in biology in 1993 from the University of Puget Sound, Tacoma, Wash., and her master's degree in plant pathology from the University of Nebraska, Lincoln, in 1995. She obtained her doctorate in plant pathology, with a minor in biotechnology, from North Carolina State University, Raleigh, in 2001. Mitchum served as a postdoctoral fellow with the Developmental, Cell and Molecular Biology Group at Duke University in 2003.

For any seminar technical issues, Siddique may be reached at ssiddique@ucdavis.edu.

Want to learn the basics of nematodes, aka roundworms? Be sure to watch nematologist Steve Nadler, professor and chair of the UC Davis Department of Entomology and Nematology in this YouTube video. He delivered this presentation virtually at the 2021 UC Davis Biodiversity Museum Day. He discusses what they are and why they're important to the ecosystem.